Artwork

İçerik The Data Flowcast tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan The Data Flowcast veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
Player FM - Podcast Uygulaması
Player FM uygulamasıyla çevrimdışı Player FM !

Customizing Airflow for Complex Data Environments at Stripe with Nick Bilozerov and Sharadh Krishnamurthy

27:40
 
Paylaş
 

Manage episode 469915069 series 2948506
İçerik The Data Flowcast tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan The Data Flowcast veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.

Keeping data pipelines reliable at scale requires more than just the right tools — it demands constant innovation. In this episode, Nick Bilozerov, Senior Data Engineer at Stripe, and Sharadh Krishnamurthy, Engineering Manager at Stripe, discuss how Stripe customizes Airflow for its needs, the evolution of its data orchestration framework and the transition to Airflow 2. They also share insights on scaling data workflows while maintaining performance, reliability and developer experience.

Key Takeaways:

(02:04) Stripe’s mission is to grow the GDP of the internet by supporting businesses with payments and data.

(05:08) 80% of Stripe engineers use data orchestration, making scalability critical.

(06:06) Airflow powers business reports, regulatory needs and ML workflows.

(08:02) Custom task frameworks improve dependencies and validation.

(08:50) "User scope mode" enables local testing without production impact.

(10:39) Migrating to Airflow 2 improves isolation, safety and scalability.

(16:40) Monolithic DAGs caused database issues, prompting a service-based shift.

(19:24) Frequent Airflow upgrades ensure stability and access to new features.

(21:38) DAG versioning and backfill improvements enhance developer experience.

(23:38) Greater UI customization would offer more flexibility.

Resources Mentioned:

Nick Bilozerov -

https://www.linkedin.com/in/nick-bilozerov/

Sharadh Krishnamurthy -

https://www.linkedin.com/in/sharadhk/

Apache Airflow -

https://airflow.apache.org/

Stripe | LinkedIn -

https://www.linkedin.com/company/stripe/

Stripe | Website -

https://stripe.com/

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

82 bölüm

Artwork
iconPaylaş
 
Manage episode 469915069 series 2948506
İçerik The Data Flowcast tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan The Data Flowcast veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.

Keeping data pipelines reliable at scale requires more than just the right tools — it demands constant innovation. In this episode, Nick Bilozerov, Senior Data Engineer at Stripe, and Sharadh Krishnamurthy, Engineering Manager at Stripe, discuss how Stripe customizes Airflow for its needs, the evolution of its data orchestration framework and the transition to Airflow 2. They also share insights on scaling data workflows while maintaining performance, reliability and developer experience.

Key Takeaways:

(02:04) Stripe’s mission is to grow the GDP of the internet by supporting businesses with payments and data.

(05:08) 80% of Stripe engineers use data orchestration, making scalability critical.

(06:06) Airflow powers business reports, regulatory needs and ML workflows.

(08:02) Custom task frameworks improve dependencies and validation.

(08:50) "User scope mode" enables local testing without production impact.

(10:39) Migrating to Airflow 2 improves isolation, safety and scalability.

(16:40) Monolithic DAGs caused database issues, prompting a service-based shift.

(19:24) Frequent Airflow upgrades ensure stability and access to new features.

(21:38) DAG versioning and backfill improvements enhance developer experience.

(23:38) Greater UI customization would offer more flexibility.

Resources Mentioned:

Nick Bilozerov -

https://www.linkedin.com/in/nick-bilozerov/

Sharadh Krishnamurthy -

https://www.linkedin.com/in/sharadhk/

Apache Airflow -

https://airflow.apache.org/

Stripe | LinkedIn -

https://www.linkedin.com/company/stripe/

Stripe | Website -

https://stripe.com/

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

82 bölüm

All episodes

×
 
Loading …

Player FM'e Hoş Geldiniz!

Player FM şu anda sizin için internetteki yüksek kalitedeki podcast'leri arıyor. En iyi podcast uygulaması ve Android, iPhone ve internet üzerinde çalışıyor. Aboneliklerinizi cihazlar arasında eş zamanlamak için üye olun.

 

Hızlı referans rehberi

Keşfederken bu şovu dinleyin
Çal