Artwork

İçerik Tessl tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan Tessl veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
Player FM - Podcast Uygulaması
Player FM uygulamasıyla çevrimdışı Player FM !

The Graph Layer Behind NASA’s Breakthroughs | Michael Hunger

36:24
 
Paylaş
 

Manage episode 493310236 series 3585084
İçerik Tessl tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan Tessl veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.

Michael Hunger of Neo4j, joins Simon Maple to unpack how graph databases inject structure, intent, and traceability into modern AI systems.
On the docket:

  • why relationships in data encode intent
  • the black-box problem in vector based RAG
  • why devs should build their own MCP server

AI Native Dev, powered by Tessl and our global dev community, is your go-to podcast for solutions in software development in the age of AI. Tune in as we engage with engineers, founders, and open-source innovators to talk all things AI, security, and development.
Connect with us here:

  1. Michael Hunger- https://www.linkedin.com/in/jexpde/
  2. Simon Maple- https://www.linkedin.com/in/simonmaple/
  3. Tessl- https://www.linkedin.com/company/tesslio/
  4. AI Native Dev- https://www.linkedin.com/showcase/ai-native-dev/

(00:00) Trailer
(01:03) Introduction & Neo4j Origins
(03:02) Persisting Relationships for High-Performance Queries
(04:00) Modeling Business Intent & Key Use Cases
(05:00) Fraud Detection at Scale with Graph Algorithms
(06:11) Graph-Enhanced RAG vs. Vector-Only Retrieval
(09:02) Explainability & Drill-Down Evaluation in RAG
(13:05) Fusing Structured & Unstructured Data for Context
(15:00) MCP for Developer Productivity: Schema-to-Code & API Wrapping
(21:16) Security & Sandboxing Best Practices for MCP
(29:08) MCP Server Recommendations & Outro

Join the AI Native Dev Community on Discord: https://tessl.co/4ghikjh
Ask us questions: [email protected]

  continue reading

Bölümler

1. Trailer (00:00:00)

2. Introduction & Neo4j Origins (00:01:03)

3. Persisting Relationships for High-Performance Queries (00:03:02)

4. Modeling Business Intent & Key Use Cases (00:04:00)

5. Fraud Detection at Scale with Graph Algorithms (00:05:00)

6. Graph-Enhanced RAG vs. Vector-Only Retrieval (00:06:11)

7. Explainability & Drill-Down Evaluation in RAG (00:09:02)

8. Fusing Structured & Unstructured Data for Context (00:13:05)

9. MCP for Developer Productivity: Schema-to-Code & API Wrapping (00:15:00)

10. Security & Sandboxing Best Practices for MCP (00:21:57)

11. MCP Server Recommendations & Outro (00:29:49)

83 bölüm

Artwork
iconPaylaş
 
Manage episode 493310236 series 3585084
İçerik Tessl tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan Tessl veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.

Michael Hunger of Neo4j, joins Simon Maple to unpack how graph databases inject structure, intent, and traceability into modern AI systems.
On the docket:

  • why relationships in data encode intent
  • the black-box problem in vector based RAG
  • why devs should build their own MCP server

AI Native Dev, powered by Tessl and our global dev community, is your go-to podcast for solutions in software development in the age of AI. Tune in as we engage with engineers, founders, and open-source innovators to talk all things AI, security, and development.
Connect with us here:

  1. Michael Hunger- https://www.linkedin.com/in/jexpde/
  2. Simon Maple- https://www.linkedin.com/in/simonmaple/
  3. Tessl- https://www.linkedin.com/company/tesslio/
  4. AI Native Dev- https://www.linkedin.com/showcase/ai-native-dev/

(00:00) Trailer
(01:03) Introduction & Neo4j Origins
(03:02) Persisting Relationships for High-Performance Queries
(04:00) Modeling Business Intent & Key Use Cases
(05:00) Fraud Detection at Scale with Graph Algorithms
(06:11) Graph-Enhanced RAG vs. Vector-Only Retrieval
(09:02) Explainability & Drill-Down Evaluation in RAG
(13:05) Fusing Structured & Unstructured Data for Context
(15:00) MCP for Developer Productivity: Schema-to-Code & API Wrapping
(21:16) Security & Sandboxing Best Practices for MCP
(29:08) MCP Server Recommendations & Outro

Join the AI Native Dev Community on Discord: https://tessl.co/4ghikjh
Ask us questions: [email protected]

  continue reading

Bölümler

1. Trailer (00:00:00)

2. Introduction & Neo4j Origins (00:01:03)

3. Persisting Relationships for High-Performance Queries (00:03:02)

4. Modeling Business Intent & Key Use Cases (00:04:00)

5. Fraud Detection at Scale with Graph Algorithms (00:05:00)

6. Graph-Enhanced RAG vs. Vector-Only Retrieval (00:06:11)

7. Explainability & Drill-Down Evaluation in RAG (00:09:02)

8. Fusing Structured & Unstructured Data for Context (00:13:05)

9. MCP for Developer Productivity: Schema-to-Code & API Wrapping (00:15:00)

10. Security & Sandboxing Best Practices for MCP (00:21:57)

11. MCP Server Recommendations & Outro (00:29:49)

83 bölüm

Tüm bölümler

×
 
Loading …

Player FM'e Hoş Geldiniz!

Player FM şu anda sizin için internetteki yüksek kalitedeki podcast'leri arıyor. En iyi podcast uygulaması ve Android, iPhone ve internet üzerinde çalışıyor. Aboneliklerinizi cihazlar arasında eş zamanlamak için üye olun.

 

Hızlı referans rehberi

Keşfederken bu şovu dinleyin
Çal