Artwork

İçerik Yannic Kilcher tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan Yannic Kilcher veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
Player FM - Podcast Uygulaması
Player FM uygulamasıyla çevrimdışı Player FM !

Neural Networks are Decision Trees (w/ Alexander Mattick)

31:50
 
Paylaş
 

Manage episode 345029875 series 2974171
İçerik Yannic Kilcher tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan Yannic Kilcher veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.

#neuralnetworks #machinelearning #ai

Alexander Mattick joins me to discuss the paper "Neural Networks are Decision Trees", which has generated a lot of hype on social media. We ask the question: Has this paper solved one of the large mysteries of deep learning and opened the black-box neural networks up to interpretability?

OUTLINE:

0:00 - Introduction

2:20 - Aren't Neural Networks non-linear?

5:20 - What does it all mean?

8:00 - How large do these trees get?

11:50 - Decision Trees vs Neural Networks

17:15 - Is this paper new?

22:20 - Experimental results

27:30 - Can Trees and Networks work together?

Paper: https://arxiv.org/abs/2210.05189

Abstract:

In this manuscript, we show that any feedforward neural network having piece-wise linear activation functions can be represented as a decision tree. The representation is equivalence and not an approximation, thus keeping the accuracy of the neural network exactly as is. We believe that this work paves the way to tackle the black-box nature of neural networks. We share equivalent trees of some neural networks and show that besides providing interpretability, tree representation can also achieve some computational advantages. The analysis holds both for fully connected and convolutional networks, which may or may not also include skip connections and/or normalizations.

Author: Caglar Aytekin

Links:

Homepage: https://ykilcher.com

Merch: https://ykilcher.com/merch

YouTube: https://www.youtube.com/c/yannickilcher

Twitter: https://twitter.com/ykilcher

Discord: https://ykilcher.com/discord

LinkedIn: https://www.linkedin.com/in/ykilcher

If you want to support me, the best thing to do is to share out the content :)

If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):

SubscribeStar: https://www.subscribestar.com/yannickilcher

Patreon: https://www.patreon.com/yannickilcher

Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq

Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2

Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m

Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

  continue reading

177 bölüm

Artwork
iconPaylaş
 
Manage episode 345029875 series 2974171
İçerik Yannic Kilcher tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan Yannic Kilcher veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.

#neuralnetworks #machinelearning #ai

Alexander Mattick joins me to discuss the paper "Neural Networks are Decision Trees", which has generated a lot of hype on social media. We ask the question: Has this paper solved one of the large mysteries of deep learning and opened the black-box neural networks up to interpretability?

OUTLINE:

0:00 - Introduction

2:20 - Aren't Neural Networks non-linear?

5:20 - What does it all mean?

8:00 - How large do these trees get?

11:50 - Decision Trees vs Neural Networks

17:15 - Is this paper new?

22:20 - Experimental results

27:30 - Can Trees and Networks work together?

Paper: https://arxiv.org/abs/2210.05189

Abstract:

In this manuscript, we show that any feedforward neural network having piece-wise linear activation functions can be represented as a decision tree. The representation is equivalence and not an approximation, thus keeping the accuracy of the neural network exactly as is. We believe that this work paves the way to tackle the black-box nature of neural networks. We share equivalent trees of some neural networks and show that besides providing interpretability, tree representation can also achieve some computational advantages. The analysis holds both for fully connected and convolutional networks, which may or may not also include skip connections and/or normalizations.

Author: Caglar Aytekin

Links:

Homepage: https://ykilcher.com

Merch: https://ykilcher.com/merch

YouTube: https://www.youtube.com/c/yannickilcher

Twitter: https://twitter.com/ykilcher

Discord: https://ykilcher.com/discord

LinkedIn: https://www.linkedin.com/in/ykilcher

If you want to support me, the best thing to do is to share out the content :)

If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):

SubscribeStar: https://www.subscribestar.com/yannickilcher

Patreon: https://www.patreon.com/yannickilcher

Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq

Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2

Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m

Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

  continue reading

177 bölüm

Tüm bölümler

×
 
Loading …

Player FM'e Hoş Geldiniz!

Player FM şu anda sizin için internetteki yüksek kalitedeki podcast'leri arıyor. En iyi podcast uygulaması ve Android, iPhone ve internet üzerinde çalışıyor. Aboneliklerinizi cihazlar arasında eş zamanlamak için üye olun.

 

Hızlı referans rehberi