Flash Forward is a show about possible (and not so possible) future scenarios. What would the warranty on a sex robot look like? How would diplomacy work if we couldn’t lie? Could there ever be a fecal transplant black market? (Complicated, it wouldn’t, and yes, respectively, in case you’re curious.) Hosted and produced by award winning science journalist Rose Eveleth, each episode combines audio drama and journalism to go deep on potential tomorrows, and uncovers what those futures might re ...
…
continue reading
İçerik The Thesis Review and Sean Welleck tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan The Thesis Review and Sean Welleck veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
Player FM - Podcast Uygulaması
Player FM uygulamasıyla çevrimdışı Player FM !
Player FM uygulamasıyla çevrimdışı Player FM !
[09] Kenneth Stanley - Efficient Evolution of Neural Networks through Complexification
Manage episode 302418436 series 2982803
İçerik The Thesis Review and Sean Welleck tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan The Thesis Review and Sean Welleck veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
Kenneth Stanley is a researcher at OpenAI, where he leads the team on Open-endedness. Previously he was a Professor Computer Science at the University of Central Florida, cofounder of Geometric Intelligence, and head of Core AI research at Uber AI labs. His PhD thesis is titled "Efficient Evolution of Neural Networks through Complexification", which he completed on 2004 at the University of Texas. We talk about evolving increasingly complex structures and how this led to the NEAT algorithm that he developed during his PhD. We discuss his research directions related to open-endedness, how the field has changed over time, and how he currently views algorithms that were developed over a decade ago. Episode notes: https://cs.nyu.edu/~welleck/episode9.html Follow the Thesis Review (@thesisreview) and Sean Welleck (@wellecks) on Twitter, and find out more info about the show at https://cs.nyu.edu/~welleck/podcast.html Support The Thesis Review at www.buymeacoffee.com/thesisreview
…
continue reading
49 bölüm
Manage episode 302418436 series 2982803
İçerik The Thesis Review and Sean Welleck tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan The Thesis Review and Sean Welleck veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
Kenneth Stanley is a researcher at OpenAI, where he leads the team on Open-endedness. Previously he was a Professor Computer Science at the University of Central Florida, cofounder of Geometric Intelligence, and head of Core AI research at Uber AI labs. His PhD thesis is titled "Efficient Evolution of Neural Networks through Complexification", which he completed on 2004 at the University of Texas. We talk about evolving increasingly complex structures and how this led to the NEAT algorithm that he developed during his PhD. We discuss his research directions related to open-endedness, how the field has changed over time, and how he currently views algorithms that were developed over a decade ago. Episode notes: https://cs.nyu.edu/~welleck/episode9.html Follow the Thesis Review (@thesisreview) and Sean Welleck (@wellecks) on Twitter, and find out more info about the show at https://cs.nyu.edu/~welleck/podcast.html Support The Thesis Review at www.buymeacoffee.com/thesisreview
…
continue reading
49 bölüm
All episodes
×Player FM'e Hoş Geldiniz!
Player FM şu anda sizin için internetteki yüksek kalitedeki podcast'leri arıyor. En iyi podcast uygulaması ve Android, iPhone ve internet üzerinde çalışıyor. Aboneliklerinizi cihazlar arasında eş zamanlamak için üye olun.