Flash Forward is a show about possible (and not so possible) future scenarios. What would the warranty on a sex robot look like? How would diplomacy work if we couldn’t lie? Could there ever be a fecal transplant black market? (Complicated, it wouldn’t, and yes, respectively, in case you’re curious.) Hosted and produced by award winning science journalist Rose Eveleth, each episode combines audio drama and journalism to go deep on potential tomorrows, and uncovers what those futures might re ...
…
continue reading
İçerik The Thesis Review and Sean Welleck tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan The Thesis Review and Sean Welleck veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
Player FM - Podcast Uygulaması
Player FM uygulamasıyla çevrimdışı Player FM !
Player FM uygulamasıyla çevrimdışı Player FM !
[04] Sebastian Nowozin - Learning with Structured Data: Applications to Computer Vision
MP3•Bölüm sayfası
Manage episode 302418441 series 2982803
İçerik The Thesis Review and Sean Welleck tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan The Thesis Review and Sean Welleck veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
Sebastian Nowozin is currently a Researcher at Microsoft Research Cambridge. His research focuses on probabilistic deep learning, consequences of model misspecification, understanding agent complexity in order to improve learning efficiency, and designing models for reasoning and planning. His PhD thesis is titled "Learning with Structured Data: Applications to Computer Vision", which he completed in 2009. We discuss the work in his thesis on structured inputs and structured outputs, which involves beautiful ideas from polyhedral combinatorics and optimization. We talk about his recent work on Bayesian deep learning and the connections it has to ideas that he explored during his PhD. Episode notes: https://cs.nyu.edu/~welleck/episode4.html Follow the Thesis Review (@thesisreview) and Sean Welleck (@wellecks) on Twitter, and find out more info about the show at https://cs.nyu.edu/~welleck/podcast.html
…
continue reading
49 bölüm
MP3•Bölüm sayfası
Manage episode 302418441 series 2982803
İçerik The Thesis Review and Sean Welleck tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan The Thesis Review and Sean Welleck veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
Sebastian Nowozin is currently a Researcher at Microsoft Research Cambridge. His research focuses on probabilistic deep learning, consequences of model misspecification, understanding agent complexity in order to improve learning efficiency, and designing models for reasoning and planning. His PhD thesis is titled "Learning with Structured Data: Applications to Computer Vision", which he completed in 2009. We discuss the work in his thesis on structured inputs and structured outputs, which involves beautiful ideas from polyhedral combinatorics and optimization. We talk about his recent work on Bayesian deep learning and the connections it has to ideas that he explored during his PhD. Episode notes: https://cs.nyu.edu/~welleck/episode4.html Follow the Thesis Review (@thesisreview) and Sean Welleck (@wellecks) on Twitter, and find out more info about the show at https://cs.nyu.edu/~welleck/podcast.html
…
continue reading
49 bölüm
Tüm bölümler
×Player FM'e Hoş Geldiniz!
Player FM şu anda sizin için internetteki yüksek kalitedeki podcast'leri arıyor. En iyi podcast uygulaması ve Android, iPhone ve internet üzerinde çalışıyor. Aboneliklerinizi cihazlar arasında eş zamanlamak için üye olun.