Artwork

İçerik The Data Flowcast tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan The Data Flowcast veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
Player FM - Podcast Uygulaması
Player FM uygulamasıyla çevrimdışı Player FM !

Optimizing Large-Scale Deployments at LinkedIn with Rahul Gade

27:47
 
Paylaş
 

Manage episode 453266231 series 2948506
İçerik The Data Flowcast tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan The Data Flowcast veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.

Scaling deployments for a billion users demands innovation, precision and resilience. In this episode, we dive into how LinkedIn optimizes its continuous deployment process using Apache Airflow. Rahul Gade, Staff Software Engineer at LinkedIn, shares his insights on building scalable systems and democratizing deployments for over 10,000 engineers.

Rahul discusses the challenges of managing large-scale deployments across 6,000 services and how his team leverages Airflow to enhance efficiency, reliability and user accessibility.

Key Takeaways:

(01:36) LinkedIn minimizes human involvement in production to reduce errors.

(02:00) Airflow powers LinkedIn’s Continuous Deployment platform.

(05:43) Continuous deployment adoption grew from 8% to a targeted 80%.

(11:25) Kubernetes ensures scalability and flexibility for deployments.

(12:04) A custom UI offers real-time deployment transparency.

(16:23) No-code YAML workflows simplify deployment tasks.

(17:18) Canaries and metrics ensure safe deployments across fabrics.

(20:45) A gateway service ensures redundancy across Airflow clusters.

(24:22) Abstractions let engineers focus on development, not logistics.

(25:20) Multi-language support in Airflow 3.0 simplifies adoption.

Resources Mentioned:

Rahul Gade -

https://www.linkedin.com/in/rahul-gade-68666818/

LinkedIn -

https://www.linkedin.com/company/linkedin/

Apache Airflow -

https://airflow.apache.org/

Kubernetes -

https://kubernetes.io/

Open Policy Agent (OPA) -

https://www.openpolicyagent.org/

Backstage -

https://backstage.io/

Apache Airflow Survey -

https://astronomer.typeform.com/airflowsurvey24

Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

50 bölüm

Artwork
iconPaylaş
 
Manage episode 453266231 series 2948506
İçerik The Data Flowcast tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan The Data Flowcast veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.

Scaling deployments for a billion users demands innovation, precision and resilience. In this episode, we dive into how LinkedIn optimizes its continuous deployment process using Apache Airflow. Rahul Gade, Staff Software Engineer at LinkedIn, shares his insights on building scalable systems and democratizing deployments for over 10,000 engineers.

Rahul discusses the challenges of managing large-scale deployments across 6,000 services and how his team leverages Airflow to enhance efficiency, reliability and user accessibility.

Key Takeaways:

(01:36) LinkedIn minimizes human involvement in production to reduce errors.

(02:00) Airflow powers LinkedIn’s Continuous Deployment platform.

(05:43) Continuous deployment adoption grew from 8% to a targeted 80%.

(11:25) Kubernetes ensures scalability and flexibility for deployments.

(12:04) A custom UI offers real-time deployment transparency.

(16:23) No-code YAML workflows simplify deployment tasks.

(17:18) Canaries and metrics ensure safe deployments across fabrics.

(20:45) A gateway service ensures redundancy across Airflow clusters.

(24:22) Abstractions let engineers focus on development, not logistics.

(25:20) Multi-language support in Airflow 3.0 simplifies adoption.

Resources Mentioned:

Rahul Gade -

https://www.linkedin.com/in/rahul-gade-68666818/

LinkedIn -

https://www.linkedin.com/company/linkedin/

Apache Airflow -

https://airflow.apache.org/

Kubernetes -

https://kubernetes.io/

Open Policy Agent (OPA) -

https://www.openpolicyagent.org/

Backstage -

https://backstage.io/

Apache Airflow Survey -

https://astronomer.typeform.com/airflowsurvey24

Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

50 bölüm

All episodes

×
 
Loading …

Player FM'e Hoş Geldiniz!

Player FM şu anda sizin için internetteki yüksek kalitedeki podcast'leri arıyor. En iyi podcast uygulaması ve Android, iPhone ve internet üzerinde çalışıyor. Aboneliklerinizi cihazlar arasında eş zamanlamak için üye olun.

 

Hızlı referans rehberi

Keşfederken bu şovu dinleyin
Çal