İçerik Robin Ranjit Singh Chauhan tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan Robin Ranjit Singh Chauhan veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
Player FM - Podcast Uygulaması
Player FM uygulamasıyla çevrimdışı Player FM !
Player FM uygulamasıyla çevrimdışı Player FM !
Nan Jiang
MP3•Bölüm sayfası
Manage episode 266378971 series 2536330
İçerik Robin Ranjit Singh Chauhan tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan Robin Ranjit Singh Chauhan veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
Nan Jiang is an Assistant Professor of Computer Science at University of Illinois. He was a Postdoc Microsoft Research, and did his PhD at University of Michigan under Professor Satinder Singh.
Featured References
- Reinforcement Learning: Theory and Algorithms
Alekh Agarwal Nan Jiang Sham M. Kakade - Model-based RL in Contextual Decision Processes: PAC bounds and Exponential Improvements over Model-free Approaches
Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford - Information-Theoretic Considerations in Batch Reinforcement Learning
Jinglin Chen, Nan Jiang
Additional References
- Towards a Unified Theory of State Abstraction for MDPs, Lihong Li, Thomas J. Walsh, Michael L. Littman
- Doubly Robust Off-policy Value Evaluation for Reinforcement Learning, Nan Jiang, Lihong Li
- Minimax Confidence Interval for Off-Policy Evaluation and Policy Optimization, Nan Jiang, Jiawei Huang
- Empirical Study of Off-Policy Policy Evaluation for Reinforcement Learning, Cameron Voloshin, Hoang M. Le, Nan Jiang, Yisong Yue
Errata
- [Robin] I misspoke when I said in domain randomization we want the agent to "ignore" domain parameters. What I should have said is, we want the agent to perform well within some range of domain parameters, it should be robust with respect to domain parameters.
61 bölüm
MP3•Bölüm sayfası
Manage episode 266378971 series 2536330
İçerik Robin Ranjit Singh Chauhan tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan Robin Ranjit Singh Chauhan veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
Nan Jiang is an Assistant Professor of Computer Science at University of Illinois. He was a Postdoc Microsoft Research, and did his PhD at University of Michigan under Professor Satinder Singh.
Featured References
- Reinforcement Learning: Theory and Algorithms
Alekh Agarwal Nan Jiang Sham M. Kakade - Model-based RL in Contextual Decision Processes: PAC bounds and Exponential Improvements over Model-free Approaches
Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford - Information-Theoretic Considerations in Batch Reinforcement Learning
Jinglin Chen, Nan Jiang
Additional References
- Towards a Unified Theory of State Abstraction for MDPs, Lihong Li, Thomas J. Walsh, Michael L. Littman
- Doubly Robust Off-policy Value Evaluation for Reinforcement Learning, Nan Jiang, Lihong Li
- Minimax Confidence Interval for Off-Policy Evaluation and Policy Optimization, Nan Jiang, Jiawei Huang
- Empirical Study of Off-Policy Policy Evaluation for Reinforcement Learning, Cameron Voloshin, Hoang M. Le, Nan Jiang, Yisong Yue
Errata
- [Robin] I misspoke when I said in domain randomization we want the agent to "ignore" domain parameters. What I should have said is, we want the agent to perform well within some range of domain parameters, it should be robust with respect to domain parameters.
61 bölüm
Tüm bölümler
×Player FM'e Hoş Geldiniz!
Player FM şu anda sizin için internetteki yüksek kalitedeki podcast'leri arıyor. En iyi podcast uygulaması ve Android, iPhone ve internet üzerinde çalışıyor. Aboneliklerinizi cihazlar arasında eş zamanlamak için üye olun.