BBC Radio 5 live’s award winning gaming podcast, discussing the world of video games and games culture.
…
continue reading
İçerik Adam Bien tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan Adam Bien veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
Player FM - Podcast Uygulaması
Player FM uygulamasıyla çevrimdışı Player FM !
Player FM uygulamasıyla çevrimdışı Player FM !
Exploring ONNX, Embedding Models, and Retrieval Augmented Generation (RAG) with Langchain4j
Manage episode 421443440 series 2469611
İçerik Adam Bien tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan Adam Bien veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
An airhacks.fm conversation with Dmytro Liubarskyi (@langchain4j) about:
…
continue reading
Dmytro previously on "#285 How LangChain4j Happened", discussion about ONNX format and runtime for running neural network models in Java, using langchain4j library for seamless integration and data handling, embedding models for converting text into vector representations, strategies for handling longer text inputs by splitting and averaging embeddings, overview of the retrieval augmented generation (RAG) pipeline and its components, using embeddings for query transformation, routing, and data source selection in RAG, integrating Langchain4j with quarkus and CDI for building AI-powered applications, Langchain4j provides pre-packaged ONNX models as Maven dependencies, embedding models are faster and smaller compared to full language models, possibilities of using embeddings for query expansion, summarization, and data source selection, cross-checking model outputs using embeddings or another language model, decomposing complex AI services into smaller, specialized sub-modules, injecting the right tools and data based on query classification
Dmytro Liubarskyi on twitter: @langchain4j
341 bölüm
Manage episode 421443440 series 2469611
İçerik Adam Bien tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan Adam Bien veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
An airhacks.fm conversation with Dmytro Liubarskyi (@langchain4j) about:
…
continue reading
Dmytro previously on "#285 How LangChain4j Happened", discussion about ONNX format and runtime for running neural network models in Java, using langchain4j library for seamless integration and data handling, embedding models for converting text into vector representations, strategies for handling longer text inputs by splitting and averaging embeddings, overview of the retrieval augmented generation (RAG) pipeline and its components, using embeddings for query transformation, routing, and data source selection in RAG, integrating Langchain4j with quarkus and CDI for building AI-powered applications, Langchain4j provides pre-packaged ONNX models as Maven dependencies, embedding models are faster and smaller compared to full language models, possibilities of using embeddings for query expansion, summarization, and data source selection, cross-checking model outputs using embeddings or another language model, decomposing complex AI services into smaller, specialized sub-modules, injecting the right tools and data based on query classification
Dmytro Liubarskyi on twitter: @langchain4j
341 bölüm
Tüm bölümler
×Player FM'e Hoş Geldiniz!
Player FM şu anda sizin için internetteki yüksek kalitedeki podcast'leri arıyor. En iyi podcast uygulaması ve Android, iPhone ve internet üzerinde çalışıyor. Aboneliklerinizi cihazlar arasında eş zamanlamak için üye olun.