Artwork

İçerik Sean Carroll and Sean Carroll | Wondery tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan Sean Carroll and Sean Carroll | Wondery veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
Player FM - Podcast Uygulaması
Player FM uygulamasıyla çevrimdışı Player FM !

282 | Joel David Hamkins on Puzzles of Reality and Infinity

1:18:23
 
Paylaş
 

Manage episode 429000449 series 2394256
İçerik Sean Carroll and Sean Carroll | Wondery tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan Sean Carroll and Sean Carroll | Wondery veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.

The philosophy of mathematics would be so much easier if it weren't for infinity. The concept seems natural, but taking it seriously opens the door to counterintuitive results. As mathematician and philosopher Joel David Hamkins says in this conversation, when we say that the natural numbers are "0, 1, 2, 3, and so on," that "and so on" is hopelessly vague. We talk about different ways to think about the puzzles of infinity, how they might be resolved, and implications for mathematical realism.

Blog post with transcript: https://www.preposterousuniverse.com/podcast/2024/07/15/282-joel-david-hamkins-on-puzzles-of-reality-and-infinity/

Support Mindscape on Patreon.

Joel David Hamkins received his Ph.D. in mathematics from the University of California, Berkeley. He is currently the John Cardinal O'Hara Professor of Logic at the University of Notre Dame. He is a pioneer of the idea of the set theory multiverse. He is the top-rated user by reputation score on MathOverflow. He is currently working on The Book of Infinity, to be published by MIT Press.

See Privacy Policy at https://art19.com/privacy and California Privacy Notice at https://art19.com/privacy#do-not-sell-my-info.

  continue reading

362 bölüm

Artwork
iconPaylaş
 
Manage episode 429000449 series 2394256
İçerik Sean Carroll and Sean Carroll | Wondery tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan Sean Carroll and Sean Carroll | Wondery veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.

The philosophy of mathematics would be so much easier if it weren't for infinity. The concept seems natural, but taking it seriously opens the door to counterintuitive results. As mathematician and philosopher Joel David Hamkins says in this conversation, when we say that the natural numbers are "0, 1, 2, 3, and so on," that "and so on" is hopelessly vague. We talk about different ways to think about the puzzles of infinity, how they might be resolved, and implications for mathematical realism.

Blog post with transcript: https://www.preposterousuniverse.com/podcast/2024/07/15/282-joel-david-hamkins-on-puzzles-of-reality-and-infinity/

Support Mindscape on Patreon.

Joel David Hamkins received his Ph.D. in mathematics from the University of California, Berkeley. He is currently the John Cardinal O'Hara Professor of Logic at the University of Notre Dame. He is a pioneer of the idea of the set theory multiverse. He is the top-rated user by reputation score on MathOverflow. He is currently working on The Book of Infinity, to be published by MIT Press.

See Privacy Policy at https://art19.com/privacy and California Privacy Notice at https://art19.com/privacy#do-not-sell-my-info.

  continue reading

362 bölüm

Tüm bölümler

×
 
Loading …

Player FM'e Hoş Geldiniz!

Player FM şu anda sizin için internetteki yüksek kalitedeki podcast'leri arıyor. En iyi podcast uygulaması ve Android, iPhone ve internet üzerinde çalışıyor. Aboneliklerinizi cihazlar arasında eş zamanlamak için üye olun.

 

Hızlı referans rehberi