Artwork

İçerik O'Reilly Radar tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan O'Reilly Radar veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
Player FM - Podcast Uygulaması
Player FM uygulamasıyla çevrimdışı Player FM !
icon Daily Deals

Machine Learning and Analytics for Time Series Data

40:33
 
Paylaş
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on June 24, 2021 00:15 (4y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 243006735 series 1427720
İçerik O'Reilly Radar tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan O'Reilly Radar veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
In this episode of the Data Show, I speak with Arun Kejariwal of Facebook and Ira Cohen of Anodot (full disclosure: I’m an advisor to Anodot). This conversation stemmed from a recent online panel discussion we did, where we discussed time series data, and, specifically, anomaly detection and forecasting. Both Kejariwal (at Machine Zone, Twitter, and Facebook) and Cohen (at HP and Anodot) have extensive experience building analytic and machine learning solutions at large scale, and both have worked extensively with time-series data. The growing interest in AI and machine learning has not been confined to computer vision, speech technologies, or text. In the enterprise, there is strong interest in using similar automation tools for temporal data and time series.
  continue reading

443 bölüm

Artwork
iconPaylaş
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on June 24, 2021 00:15 (4y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 243006735 series 1427720
İçerik O'Reilly Radar tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan O'Reilly Radar veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
In this episode of the Data Show, I speak with Arun Kejariwal of Facebook and Ira Cohen of Anodot (full disclosure: I’m an advisor to Anodot). This conversation stemmed from a recent online panel discussion we did, where we discussed time series data, and, specifically, anomaly detection and forecasting. Both Kejariwal (at Machine Zone, Twitter, and Facebook) and Cohen (at HP and Anodot) have extensive experience building analytic and machine learning solutions at large scale, and both have worked extensively with time-series data. The growing interest in AI and machine learning has not been confined to computer vision, speech technologies, or text. In the enterprise, there is strong interest in using similar automation tools for temporal data and time series.
  continue reading

443 bölüm

Tüm bölümler

×
 
Loading …

Player FM'e Hoş Geldiniz!

Player FM şu anda sizin için internetteki yüksek kalitedeki podcast'leri arıyor. En iyi podcast uygulaması ve Android, iPhone ve internet üzerinde çalışıyor. Aboneliklerinizi cihazlar arasında eş zamanlamak için üye olun.

 

icon Daily Deals
icon Daily Deals
icon Daily Deals

Hızlı referans rehberi

Keşfederken bu şovu dinleyin
Çal