Flash Forward is a show about possible (and not so possible) future scenarios. What would the warranty on a sex robot look like? How would diplomacy work if we couldn’t lie? Could there ever be a fecal transplant black market? (Complicated, it wouldn’t, and yes, respectively, in case you’re curious.) Hosted and produced by award winning science journalist Rose Eveleth, each episode combines audio drama and journalism to go deep on potential tomorrows, and uncovers what those futures might re ...
…
continue reading
İçerik NLP Highlights and Allen Institute for Artificial Intelligence tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan NLP Highlights and Allen Institute for Artificial Intelligence veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
Player FM - Podcast Uygulaması
Player FM uygulamasıyla çevrimdışı Player FM !
Player FM uygulamasıyla çevrimdışı Player FM !
126 - Optimizing Continuous Prompts for Generation, with Lisa Li
Manage episode 293241805 series 1452120
İçerik NLP Highlights and Allen Institute for Artificial Intelligence tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan NLP Highlights and Allen Institute for Artificial Intelligence veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
We invited Lisa Li to talk about her recent work, Prefix-Tuning: Optimizing Continuous Prompts for Generation. Prefix tuning is a lightweight alternative to finetuning, and the idea is to tune only a fixed-length task-specific continuous vector, and to keep the pretrained transformer parameters frozen. We discussed how prefix tuning compares with finetuning and other efficient alternatives on two tasks in various experimental settings, and in what scenarios prefix tuning is preferable. Lisa is a Phd student at Stanford University. Lisa's webpage: https://xiangli1999.github.io/ The hosts for this episode are Pradeep Dasigi and Ana Marasović.
…
continue reading
145 bölüm
Manage episode 293241805 series 1452120
İçerik NLP Highlights and Allen Institute for Artificial Intelligence tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan NLP Highlights and Allen Institute for Artificial Intelligence veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
We invited Lisa Li to talk about her recent work, Prefix-Tuning: Optimizing Continuous Prompts for Generation. Prefix tuning is a lightweight alternative to finetuning, and the idea is to tune only a fixed-length task-specific continuous vector, and to keep the pretrained transformer parameters frozen. We discussed how prefix tuning compares with finetuning and other efficient alternatives on two tasks in various experimental settings, and in what scenarios prefix tuning is preferable. Lisa is a Phd student at Stanford University. Lisa's webpage: https://xiangli1999.github.io/ The hosts for this episode are Pradeep Dasigi and Ana Marasović.
…
continue reading
145 bölüm
Todos os episódios
×Player FM'e Hoş Geldiniz!
Player FM şu anda sizin için internetteki yüksek kalitedeki podcast'leri arıyor. En iyi podcast uygulaması ve Android, iPhone ve internet üzerinde çalışıyor. Aboneliklerinizi cihazlar arasında eş zamanlamak için üye olun.