Artwork

İçerik LessWrong tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan LessWrong veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
Player FM - Podcast Uygulaması
Player FM uygulamasıyla çevrimdışı Player FM !
icon Daily Deals

“Reducing LLM deception at scale with self-other overlap fine-tuning” by Marc Carauleanu, Diogo de Lucena, Gunnar_Zarncke, Judd Rosenblatt, Mike Vaiana, Cameron Berg

12:22
 
Paylaş
 

Manage episode 471797107 series 3364758
İçerik LessWrong tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan LessWrong veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
This research was conducted at AE Studio and supported by the AI Safety Grants programme administered by Foresight Institute with additional support from AE Studio.
Summary
In this post, we summarise the main experimental results from our new paper, "Towards Safe and Honest AI Agents with Neural Self-Other Overlap", which we presented orally at the Safe Generative AI Workshop at NeurIPS 2024. This is a follow-up to our post Self-Other Overlap: A Neglected Approach to AI Alignment, which introduced the method last July.
Our results show that the Self-Other Overlap (SOO) fine-tuning drastically[1] reduces deceptive responses in language models (LLMs), with minimal impact on general performance, across the scenarios we evaluated.
LLM Experimental Setup
We adapted a text scenario from Hagendorff designed to test LLM deception capabilities. In this scenario, the LLM must choose to recommend a room to a would-be burglar, where one room holds an expensive item [...]
---
Outline:
(00:19) Summary
(00:57) LLM Experimental Setup
(04:05) LLM Experimental Results
(05:04) Impact on capabilities
(05:46) Generalisation experiments
(08:33) Example Outputs
(09:04) Conclusion
The original text contained 6 footnotes which were omitted from this narration.
The original text contained 2 images which were described by AI.
---
First published:
March 13th, 2025
Source:
https://www.lesswrong.com/posts/jtqcsARGtmgogdcLT/reducing-llm-deception-at-scale-with-self-other-overlap-fine
---
Narrated by TYPE III AUDIO.
---
Images from the article:
undefined
undefined
undefined
undefined
  continue reading

493 bölüm

Artwork
iconPaylaş
 
Manage episode 471797107 series 3364758
İçerik LessWrong tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan LessWrong veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
This research was conducted at AE Studio and supported by the AI Safety Grants programme administered by Foresight Institute with additional support from AE Studio.
Summary
In this post, we summarise the main experimental results from our new paper, "Towards Safe and Honest AI Agents with Neural Self-Other Overlap", which we presented orally at the Safe Generative AI Workshop at NeurIPS 2024. This is a follow-up to our post Self-Other Overlap: A Neglected Approach to AI Alignment, which introduced the method last July.
Our results show that the Self-Other Overlap (SOO) fine-tuning drastically[1] reduces deceptive responses in language models (LLMs), with minimal impact on general performance, across the scenarios we evaluated.
LLM Experimental Setup
We adapted a text scenario from Hagendorff designed to test LLM deception capabilities. In this scenario, the LLM must choose to recommend a room to a would-be burglar, where one room holds an expensive item [...]
---
Outline:
(00:19) Summary
(00:57) LLM Experimental Setup
(04:05) LLM Experimental Results
(05:04) Impact on capabilities
(05:46) Generalisation experiments
(08:33) Example Outputs
(09:04) Conclusion
The original text contained 6 footnotes which were omitted from this narration.
The original text contained 2 images which were described by AI.
---
First published:
March 13th, 2025
Source:
https://www.lesswrong.com/posts/jtqcsARGtmgogdcLT/reducing-llm-deception-at-scale-with-self-other-overlap-fine
---
Narrated by TYPE III AUDIO.
---
Images from the article:
undefined
undefined
undefined
undefined
  continue reading

493 bölüm

Tüm bölümler

×
 
Loading …

Player FM'e Hoş Geldiniz!

Player FM şu anda sizin için internetteki yüksek kalitedeki podcast'leri arıyor. En iyi podcast uygulaması ve Android, iPhone ve internet üzerinde çalışıyor. Aboneliklerinizi cihazlar arasında eş zamanlamak için üye olun.

 

icon Daily Deals
icon Daily Deals
icon Daily Deals

Hızlı referans rehberi

Keşfederken bu şovu dinleyin
Çal