Artwork

İçerik Kai Kunze tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan Kai Kunze veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
Player FM - Podcast Uygulaması
Player FM uygulamasıyla çevrimdışı Player FM !

ISMAR 2024 Do you read me? (E)motion Legibility of Virtual Reality Character Representations

10:35
 
Paylaş
 

Manage episode 465362228 series 3605621
İçerik Kai Kunze tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan Kai Kunze veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.

K. Brandstätter, B. J. Congdon and A. Steed, "Do you read me? (E)motion Legibility of Virtual Reality Character Representations," 2024 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Bellevue, WA, USA, 2024, pp. 299-308, doi: 10.1109/ISMAR62088.2024.00044.

We compared the body movements of five virtual reality (VR) avatar representations in a user study (N=53) to ascertain how well these representations could convey body motions associated with different emotions: one head-and-hands representation using only tracking data, one upper-body representation using inverse kinematics (IK), and three full-body representations using IK, motioncapture, and the state-of-the-art deep-learning model AGRoL. Participants’ emotion detection accuracies were similar for the IK and AGRoL representations, highest for the full-body motion-capture representation and lowest for the head-and-hands representation. Our findings suggest that from the perspective of emotion expressivity, connected upper-body parts that provide visual continuity improve clarity, and that current techniques for algorithmically animating the lower-body are ineffective. In particular, the deep-learning technique studied did not produce more expressive results, suggesting the need for training data specifically made for social VR applications.

https://ieeexplore.ieee.org/document/10765392

  continue reading

41 bölüm

Artwork
iconPaylaş
 
Manage episode 465362228 series 3605621
İçerik Kai Kunze tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan Kai Kunze veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.

K. Brandstätter, B. J. Congdon and A. Steed, "Do you read me? (E)motion Legibility of Virtual Reality Character Representations," 2024 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Bellevue, WA, USA, 2024, pp. 299-308, doi: 10.1109/ISMAR62088.2024.00044.

We compared the body movements of five virtual reality (VR) avatar representations in a user study (N=53) to ascertain how well these representations could convey body motions associated with different emotions: one head-and-hands representation using only tracking data, one upper-body representation using inverse kinematics (IK), and three full-body representations using IK, motioncapture, and the state-of-the-art deep-learning model AGRoL. Participants’ emotion detection accuracies were similar for the IK and AGRoL representations, highest for the full-body motion-capture representation and lowest for the head-and-hands representation. Our findings suggest that from the perspective of emotion expressivity, connected upper-body parts that provide visual continuity improve clarity, and that current techniques for algorithmically animating the lower-body are ineffective. In particular, the deep-learning technique studied did not produce more expressive results, suggesting the need for training data specifically made for social VR applications.

https://ieeexplore.ieee.org/document/10765392

  continue reading

41 bölüm

Tüm bölümler

×
 
Loading …

Player FM'e Hoş Geldiniz!

Player FM şu anda sizin için internetteki yüksek kalitedeki podcast'leri arıyor. En iyi podcast uygulaması ve Android, iPhone ve internet üzerinde çalışıyor. Aboneliklerinizi cihazlar arasında eş zamanlamak için üye olun.

 

Hızlı referans rehberi

Keşfederken bu şovu dinleyin
Çal