Artwork

İçerik Gresham College tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan Gresham College veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
Player FM - Podcast Uygulaması
Player FM uygulamasıyla çevrimdışı Player FM !

A Mathematician's View of Proof - Sarah Hart

51:09
 
Paylaş
 

Manage episode 428522800 series 3428921
İçerik Gresham College tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan Gresham College veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.

The idea of proof is fundamental to mathematics. We could argue that science consists of testable theories, and therefore that it is about what can be disproved, not what can be proved. In law, the test is “beyond reasonable doubt”.

Famous conjectures in mathematics have been tested by computers for trillions of numbers – but we still call them conjectures.

In this lecture we’ll talk about what mathematicians mean by proof, and I’ll show you some of my favourites.

This lecture was recorded by Sarah Hart on 4th June 2024 at Barnard's Inn Hall, London
The transcript of the lecture is available from the Gresham College website:
https://www.gresham.ac.uk/watch-now/mathematician-proof
Gresham College has offered free public lectures for over 400 years, thanks to the generosity of our supporters. There are currently over 2,500 lectures free to access. We believe that everyone should have the opportunity to learn from some of the greatest minds. To support Gresham's mission, please consider making a donation: https://gresham.ac.uk/support/
Website: https://gresham.ac.uk
Twitter: https://twitter.com/greshamcollege
Facebook: https://facebook.com/greshamcollege
Instagram: https://instagram.com/greshamcollege

Support the show

  continue reading

2849 bölüm

Artwork
iconPaylaş
 
Manage episode 428522800 series 3428921
İçerik Gresham College tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan Gresham College veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.

The idea of proof is fundamental to mathematics. We could argue that science consists of testable theories, and therefore that it is about what can be disproved, not what can be proved. In law, the test is “beyond reasonable doubt”.

Famous conjectures in mathematics have been tested by computers for trillions of numbers – but we still call them conjectures.

In this lecture we’ll talk about what mathematicians mean by proof, and I’ll show you some of my favourites.

This lecture was recorded by Sarah Hart on 4th June 2024 at Barnard's Inn Hall, London
The transcript of the lecture is available from the Gresham College website:
https://www.gresham.ac.uk/watch-now/mathematician-proof
Gresham College has offered free public lectures for over 400 years, thanks to the generosity of our supporters. There are currently over 2,500 lectures free to access. We believe that everyone should have the opportunity to learn from some of the greatest minds. To support Gresham's mission, please consider making a donation: https://gresham.ac.uk/support/
Website: https://gresham.ac.uk
Twitter: https://twitter.com/greshamcollege
Facebook: https://facebook.com/greshamcollege
Instagram: https://instagram.com/greshamcollege

Support the show

  continue reading

2849 bölüm

Tüm bölümler

×
 
Loading …

Player FM'e Hoş Geldiniz!

Player FM şu anda sizin için internetteki yüksek kalitedeki podcast'leri arıyor. En iyi podcast uygulaması ve Android, iPhone ve internet üzerinde çalışıyor. Aboneliklerinizi cihazlar arasında eş zamanlamak için üye olun.

 

Hızlı referans rehberi