くりらじ静岡局から、技術屋目線で技術情報を追いかける番組をお届けします。
…
continue reading
İçerik iwashi tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan iwashi veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
Player FM - Podcast Uygulaması
Player FM uygulamasıyla çevrimdışı Player FM !
Player FM uygulamasıyla çevrimdışı Player FM !
107. LLMをゼロから作るということ w/ Takahiro Omi
MP3•Bölüm sayfası
Manage episode 383875982 series 2451650
İçerik iwashi tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan iwashi veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
ストックマークの近江さんをゲストに、大規模言語モデルをゼロから作る方法、学習のデータセット、モデルアーキテクチャ、学習環境への取り組みなどについて語っていただきました。
話したネタ
- どのような大規模言語モデルと作ったのか?特徴は何か?
- データセットに何を使ったのか?
- 日本語と英語とのバランスは?
- 最終的なToken数は?
- 事前学習モデルを作りたいとして、何から考えるのか?
- ノイズのクリーニングと、その方法
- 今回活用したモデルアーキテクチャ(Llama)
- 前回のアーキテクチャは GPT-NeoX
- 今回の学習環境は?
- AWS Trainum 32コア x 16ノード
- 学習にかかった時間は?
- 学習時に大変だったこと・上手くいかなかったことは?
- 学習中のチェックポイントとは何か?
- なぜ、Token生成が速いのか?
- 手元でLLMを動かすときの一番のネックは?
- bit数を落とすFineTuning
- Tokenizerとは何か?
- 日本語の単語区切りはどのように考えるのか?
- 今回のLLM作成のTokenizerは何を使ったのか?
- ビジネスドメインでのLLM評価
- ストックマーク株式会社のRecruitページ
See Privacy Policy at https://art19.com/privacy and California Privacy Notice at https://art19.com/privacy#do-not-sell-my-info.
127 bölüm
MP3•Bölüm sayfası
Manage episode 383875982 series 2451650
İçerik iwashi tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan iwashi veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
ストックマークの近江さんをゲストに、大規模言語モデルをゼロから作る方法、学習のデータセット、モデルアーキテクチャ、学習環境への取り組みなどについて語っていただきました。
話したネタ
- どのような大規模言語モデルと作ったのか?特徴は何か?
- データセットに何を使ったのか?
- 日本語と英語とのバランスは?
- 最終的なToken数は?
- 事前学習モデルを作りたいとして、何から考えるのか?
- ノイズのクリーニングと、その方法
- 今回活用したモデルアーキテクチャ(Llama)
- 前回のアーキテクチャは GPT-NeoX
- 今回の学習環境は?
- AWS Trainum 32コア x 16ノード
- 学習にかかった時間は?
- 学習時に大変だったこと・上手くいかなかったことは?
- 学習中のチェックポイントとは何か?
- なぜ、Token生成が速いのか?
- 手元でLLMを動かすときの一番のネックは?
- bit数を落とすFineTuning
- Tokenizerとは何か?
- 日本語の単語区切りはどのように考えるのか?
- 今回のLLM作成のTokenizerは何を使ったのか?
- ビジネスドメインでのLLM評価
- ストックマーク株式会社のRecruitページ
See Privacy Policy at https://art19.com/privacy and California Privacy Notice at https://art19.com/privacy#do-not-sell-my-info.
127 bölüm
Alle episoder
×Player FM'e Hoş Geldiniz!
Player FM şu anda sizin için internetteki yüksek kalitedeki podcast'leri arıyor. En iyi podcast uygulaması ve Android, iPhone ve internet üzerinde çalışıyor. Aboneliklerinizi cihazlar arasında eş zamanlamak için üye olun.