Artwork

İçerik DigEthix tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan DigEthix veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
Player FM - Podcast Uygulaması
Player FM uygulamasıyla çevrimdışı Player FM !

6: Using Data to Address Inequities in Healthcare with Muhammad Ahmad

55:53
 
Paylaş
 

Manage episode 296951483 series 2944839
İçerik DigEthix tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan DigEthix veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.

In this episode of the Podcast, Seth interviews Muhammad Ahmad. Muhammad is an Affiliate Assistant Professor in the Department of Computer Science at University of Washington and a Research Scientist at KenSci. His research areas are machine learning in healthcare, accountability and ethics in AI. His recent work is focused on foundations of machine learning and cross-cultural perspectives on AI. Muhammad’s work combines academic rigor with extensive experience in deploying machine learning systems at scale in the healthcare sector and thus first-hand knowledge of many moral and ethical dilemmas that come with it. He has published over 50 research papers in machine learning and artificial intelligence. He has a PhD in Computer Science from University of Minnesota. This episode will be the second part of our look at race and healthcare.

In this interview, Seth and Muhammad explore a variety of topics. Muhammad talks about how he eventually turned his focus towards healthcare, specifically addressing discrepancies in care between different ethnic groups. He explains many technical problems in machine learning, including the challenges to applying different definitions of fairness. The key questions to this episode are: how has data served to both obscure and to illuminate discrepancies on healthcare? How can machine learning enhance our understanding of complex social problems?

Credits:

Music: "Dreams" from Bensound.com
Contact us:

digethix.org
facebook.com/digethix
twitter.com/digethix
instagram.com/digethixfuture
EMAIL: [email protected]

  continue reading

30 bölüm

Artwork
iconPaylaş
 
Manage episode 296951483 series 2944839
İçerik DigEthix tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan DigEthix veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.

In this episode of the Podcast, Seth interviews Muhammad Ahmad. Muhammad is an Affiliate Assistant Professor in the Department of Computer Science at University of Washington and a Research Scientist at KenSci. His research areas are machine learning in healthcare, accountability and ethics in AI. His recent work is focused on foundations of machine learning and cross-cultural perspectives on AI. Muhammad’s work combines academic rigor with extensive experience in deploying machine learning systems at scale in the healthcare sector and thus first-hand knowledge of many moral and ethical dilemmas that come with it. He has published over 50 research papers in machine learning and artificial intelligence. He has a PhD in Computer Science from University of Minnesota. This episode will be the second part of our look at race and healthcare.

In this interview, Seth and Muhammad explore a variety of topics. Muhammad talks about how he eventually turned his focus towards healthcare, specifically addressing discrepancies in care between different ethnic groups. He explains many technical problems in machine learning, including the challenges to applying different definitions of fairness. The key questions to this episode are: how has data served to both obscure and to illuminate discrepancies on healthcare? How can machine learning enhance our understanding of complex social problems?

Credits:

Music: "Dreams" from Bensound.com
Contact us:

digethix.org
facebook.com/digethix
twitter.com/digethix
instagram.com/digethixfuture
EMAIL: [email protected]

  continue reading

30 bölüm

Tüm bölümler

×
 
Loading …

Player FM'e Hoş Geldiniz!

Player FM şu anda sizin için internetteki yüksek kalitedeki podcast'leri arıyor. En iyi podcast uygulaması ve Android, iPhone ve internet üzerinde çalışıyor. Aboneliklerinizi cihazlar arasında eş zamanlamak için üye olun.

 

Hızlı referans rehberi

Keşfederken bu şovu dinleyin
Çal