Artwork

İçerik Arize AI tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan Arize AI veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
Player FM - Podcast Uygulaması
Player FM uygulamasıyla çevrimdışı Player FM !

Training Large Language Models to Reason in Continuous Latent Space

24:58
 
Paylaş
 

Manage episode 461129295 series 3448051
İçerik Arize AI tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan Arize AI veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.

LLMs have typically been restricted to reason in the "language space," where chain-of-thought (CoT) is used to solve complex reasoning problems. But a new paper argues that language space may not always be the best for reasoning. In this paper read, we cover an exciting new technique from a team at Meta called Chain of Continuous Thought—also known as "Coconut." In the paper, "Training Large Language Models to Reason in a Continuous Latent Space" explores the potential of allowing LLMs to reason in an unrestricted latent space instead of being constrained by natural language tokens.
Read a full breakdown of Coconut on our blog, or join us live for the next paper reading.

Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.

  continue reading

59 bölüm

Artwork
iconPaylaş
 
Manage episode 461129295 series 3448051
İçerik Arize AI tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan Arize AI veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.

LLMs have typically been restricted to reason in the "language space," where chain-of-thought (CoT) is used to solve complex reasoning problems. But a new paper argues that language space may not always be the best for reasoning. In this paper read, we cover an exciting new technique from a team at Meta called Chain of Continuous Thought—also known as "Coconut." In the paper, "Training Large Language Models to Reason in a Continuous Latent Space" explores the potential of allowing LLMs to reason in an unrestricted latent space instead of being constrained by natural language tokens.
Read a full breakdown of Coconut on our blog, or join us live for the next paper reading.

Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.

  continue reading

59 bölüm

Tüm bölümler

×
 
Loading …

Player FM'e Hoş Geldiniz!

Player FM şu anda sizin için internetteki yüksek kalitedeki podcast'leri arıyor. En iyi podcast uygulaması ve Android, iPhone ve internet üzerinde çalışıyor. Aboneliklerinizi cihazlar arasında eş zamanlamak için üye olun.

 

Hızlı referans rehberi

Keşfederken bu şovu dinleyin
Çal