Artwork

İçerik Daniel Filan tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan Daniel Filan veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.
Player FM - Podcast Uygulaması
Player FM uygulamasıyla çevrimdışı Player FM !

38.3 - Erik Jenner on Learned Look-Ahead

23:46
 
Paylaş
 

Manage episode 455065795 series 2844728
İçerik Daniel Filan tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan Daniel Filan veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.

Lots of people in the AI safety space worry about models being able to make deliberate, multi-step plans. But can we already see this in existing neural nets? In this episode, I talk with Erik Jenner about his work looking at internal look-ahead within chess-playing neural networks.

Patreon: https://www.patreon.com/axrpodcast

Ko-fi: https://ko-fi.com/axrpodcast

The transcript: https://axrp.net/episode/2024/12/12/episode-38_3-erik-jenner-learned-look-ahead.html

FAR.AI: https://far.ai/

FAR.AI on X (aka Twitter): https://x.com/farairesearch

FAR.AI on YouTube: https://www.youtube.com/@FARAIResearch

The Alignment Workshop: https://www.alignment-workshop.com/

Topics we discuss, and timestamps:

00:57 - How chess neural nets look into the future

04:29 - The dataset and basic methodology

05:23 - Testing for branching futures?

07:57 - Which experiments demonstrate what

10:43 - How the ablation experiments work

12:38 - Effect sizes

15:23 - X-risk relevance

18:08 - Follow-up work

21:29 - How much planning does the network do?

Research we mention:

Evidence of Learned Look-Ahead in a Chess-Playing Neural Network: https://arxiv.org/abs/2406.00877

Understanding the learned look-ahead behavior of chess neural networks (a development of the follow-up research Erik mentioned): https://openreview.net/forum?id=Tl8EzmgsEp

Linear Latent World Models in Simple Transformers: A Case Study on Othello-GPT: https://arxiv.org/abs/2310.07582

Episode art by Hamish Doodles: hamishdoodles.com

  continue reading

48 bölüm

Artwork
iconPaylaş
 
Manage episode 455065795 series 2844728
İçerik Daniel Filan tarafından sağlanmıştır. Bölümler, grafikler ve podcast açıklamaları dahil tüm podcast içeriği doğrudan Daniel Filan veya podcast platform ortağı tarafından yüklenir ve sağlanır. Birinin telif hakkıyla korunan çalışmanızı izniniz olmadan kullandığını düşünüyorsanız burada https://tr.player.fm/legal özetlenen süreci takip edebilirsiniz.

Lots of people in the AI safety space worry about models being able to make deliberate, multi-step plans. But can we already see this in existing neural nets? In this episode, I talk with Erik Jenner about his work looking at internal look-ahead within chess-playing neural networks.

Patreon: https://www.patreon.com/axrpodcast

Ko-fi: https://ko-fi.com/axrpodcast

The transcript: https://axrp.net/episode/2024/12/12/episode-38_3-erik-jenner-learned-look-ahead.html

FAR.AI: https://far.ai/

FAR.AI on X (aka Twitter): https://x.com/farairesearch

FAR.AI on YouTube: https://www.youtube.com/@FARAIResearch

The Alignment Workshop: https://www.alignment-workshop.com/

Topics we discuss, and timestamps:

00:57 - How chess neural nets look into the future

04:29 - The dataset and basic methodology

05:23 - Testing for branching futures?

07:57 - Which experiments demonstrate what

10:43 - How the ablation experiments work

12:38 - Effect sizes

15:23 - X-risk relevance

18:08 - Follow-up work

21:29 - How much planning does the network do?

Research we mention:

Evidence of Learned Look-Ahead in a Chess-Playing Neural Network: https://arxiv.org/abs/2406.00877

Understanding the learned look-ahead behavior of chess neural networks (a development of the follow-up research Erik mentioned): https://openreview.net/forum?id=Tl8EzmgsEp

Linear Latent World Models in Simple Transformers: A Case Study on Othello-GPT: https://arxiv.org/abs/2310.07582

Episode art by Hamish Doodles: hamishdoodles.com

  continue reading

48 bölüm

Tüm bölümler

×
 
Loading …

Player FM'e Hoş Geldiniz!

Player FM şu anda sizin için internetteki yüksek kalitedeki podcast'leri arıyor. En iyi podcast uygulaması ve Android, iPhone ve internet üzerinde çalışıyor. Aboneliklerinizi cihazlar arasında eş zamanlamak için üye olun.

 

Hızlı referans rehberi